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Abstract-A nonsimilarity solution for mixed convection from impermeable horizontal surfaces in a 
saturated porous medium is obtained for the case of variable heat Ilux. Solutions thal cover the entire 
regime of mixed convection. including the two limits of pure forced convection and pure free convection. arc 
made possible through using two diKerent transformations to the governing equations. The nonsimilarity 
parameter cr = Rn,/Pef results from transformation of the governing equations for the rorccd flow 
dominated regime and Ihe nonsimilarity paramcler <. = Pe,/Ro: ’ arises from transformation of the 
governing equations for the buoyancy dominated regime. The two solutions provide rcsulls that cover the 
entire mixed convcclion regime from pure forced IO pure free convection limit. Numerical results for 
diflerent values of surface heat variation are presented. Correlation equations for the local and average 

Nusselt numbers, valid for the entire mixed convection regime. are also presented. 

INTRODUCTION 

CONVECTIVE heat transfer for impermeable surfaces in 
a porous medium has many engineering applications 
in geothermal reservoirs and petroleum industries. 
The problem of mixed convective heat transfer from 
impermeable inclined surfaces in saturated porous 
media was studied by Cheng [I]. who treated simi- 
larity solutions for wedge flows under the special cases 
in which the free-stream velocity and the wall tem- 
perature distribution vary according to the same 
power of the axial distance, s. For horizontal surfaces, 
condition was restricted to the case of constant heat 
flux, i.e. when the wall temperature varies according 
to x”?. Other simple geometries were also treated by 
Cheng [2] for mixed convective flows, but all were 
limited to the similarity and local similarity cases. A 
general similarity transformation for mixed con- 
vection flows in a porous medium was reported by 
Nakayama and Koyama [3] for different two-dimen- 
sional plane geometries and axisymmetric bodies of 
arbitrary shape. 

Most of the studies to date have been based on 
Darcy’s law. Darcy’s model is considered valid when 
the fiow is slow or when the pores of the porous medium 
are small [4]. The wall effect (non-slip condition) is 
more pronounced near the leading edge and decreases 
with increasing distance downstream, as discussed by 

Vapdi and Tien [5]. In general, the non-Darcian effect 
influences the velocity field more than the thermal 
field or the heat transfer rate [6]. Most of the published 
results, however, are limited to the cases where simi- 
larity [I, 21 or local similarity solution [3, 71 exists. 
The local similarity method provides numerical results 
that are of uncertain accuracy, especially for large 
values of the nonsimilarity parameter 5 where Darcy’s 
model is valid. Also, there is no positive way to estab- 
lish how the deleted terms involving the axial deriva- 
tives, the step needed to obtain local similarity. 
affect the final results [8]. Nonsimilar solutions for 

mixed convection about nonisothermal cylinders in 
cross flow and spheres in a porous medium are 
reported by Minkowycz EI al. [9], where the local non- 
similarity solution method was employed and results 
were compared with those obtained from the local 
similarity solution method. Significant differences 
between the two solutions, l&15%, were reported. 
Also Yucel [IO] reported a non-similar solution that 
accounts for the effect of injection or suction of fluid 
on free convection about a vertical cylinder in a 
porous medium. Ranganathan and Viskanta [Ill 
solved numerically the boundary layer equations for 
mixed convection along a vertical surface in a porous 
medium using a finite-difference scheme. Nakayama 
and Pop [7] presented a unified similarity trans- 
formation which is valid in the limits of pure forced 
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NOMENCLATURE 

local friction factor 
dimensionless stream function 
local heat transfer coefficient 
average heat transfer coefficient, 
(l/L)J‘fjh(x) dx 
thermal conductivity 
permeabiiity coefficient of the porous 
medium 
length of the plate 
local Nusselt number. h/k 
average Nusselt number, hL/k 
local Peclet number, ~I,x/c( 
local surface heat flux 
modified local Rayleigh number, 
g~q,.(x)Ks’/(kvct) 
Reynolds number, u&v 
temperature 

Greek symbols 
u 

B 

effective thermal diffusivity of saturated 
porous medium 
volumetric coefficient of thermal 
expansion 
boundary layer thickness 
pseudo-similarity variable 
dimensionless temperature 
dynamic viscosity 
kinematic viscosity 
nonsimilarity parameter for the forced 
convection dominated regime 
nonsimilarity parameter for the free 
convection dominated regime 
fluid density 
stream function. 

free stream temperature Subscripts 
wall temperature f forced convection dominated condition 
velocity components in A+- and y-direction n free convection dominated condition 
free stream velocity .y, .l’. ir. 5, partial derivatives with respect 
axial and normal coordinates. to s, J’, tr and (,, respectively. 

convection and pure free convection. However, the 
cases they considered for solution were restricted to 
the local similarity approximation. 

In the present work, nonsimilar solutions for 
mixed convection from a horizontal surface in a satu- 
rated porous medium are presented. To cover the 
entire mixed convection regime, two different trans- 
formations are used. In the first transformation the 
nonsimilarity parameter tr = RaJPe.2 is found to 
measure the buoyancy effect in the forced flow domi- 
nated mixed convection regime, and in the second 
transformation the nonsimilar parameter 5, = Pe,/ 
Ra,:” is found to measure the forced flow effect in the 
buoyancy dominated mixed convection regime. The 
two solutions must match and overlap over the middle 
region to cover the entire mixed convection regime, 
from pure forced convection to pure free convection. 
Results are presented for different surface heat flux 
distributions. 

ANALYSIS 

Consider the combined free and forced convection 
in a porous medium adjacent to an impermeable, 
heated horizontal flat plate at the bottom. The axial 
and normal coordinates are x and y, and the cor- 
responding velocity components are u and u, respec- 
tively. The gravitational acceleration g is acting down- 
ward in the direction opposite to the jj coordinate. 

The properties of the fluid and the porous medium 
are assumed to be constant and isotropic. In addition, 
the flow velocity and the pores of porous medium are 
assumed to be small for the Darcy model to be 
valid [4]. Under the Boussinesq and the boundary layer 
approximations, the governing equations are given by 
ref. [12] 

u, + vy = 0 (1) 

$.,,y = - (Kp,dli4 T, (2) 

T,.,. = (1/4($?,Tx-llr.J,.). (3) 

In the above equations, the stream function I) satisfies 
the continuity equation with u = II/Y and v = -I)~, 
where u and v denote the Darcian velocity components 
in the x and y directions ; T is the temperature ; p, 
p, and /3 are the density, viscosity, and the thermal 
expansion coefficient of the convecting fluid respec- 
tively; K is the permeability of the porous medium ; 
and tl is the equivalent thermal diffusivity of the 
porous medium. With power-law variation in the sur- 
face heat flux, the boundary conditions can be written 
as 

y=o: q,,, = ai’, v  = 0 

y=m: T=T,,u=u, (4) 

where CI and n are prescribed constants. Note that 
n = 0 corresponds to the case of uniform surface heat 
flux. 
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Forced convection dominated case 
In this case the following dimensionless variables 

are introduced 

(5) 

O((,-.rl) = (T- T,)Pe.~;*/[q,(s)x-/k]. (6) 

The governing equations and boundary conditions, 
equations (l)-(4), can then be transformed into 

f“‘+g,[(n+ l/2)0-(q/2)0’] = -n5fOc, (7) 

U”+ (1/2),fO’- (n+ l/2)/,0 = n&(S’O;,-O’l;;) (8) 

./‘ttr, 0) +W&,(i,-, 0) = 0 or f(tr, 0) = 0 

0’(5r,O) = - 1,.1”(5r, 00) = 1, O(i,, co) = 0 (9) 

where 

<,-(.r) = Ra,/Pe.f (10) 

and the primes denote partial differentiations with 
respect to 9. 

In the above system of equations, the parameter 5, 
is a measure of the buoyancy effect on forced convec- 
tion. The case of tr = 0 corresponds to pure forced 
convection and the limiting case of tr = cc cor- 
responds to pure free convection. The so!ution of the 
system of equations (7)-(9) cannot be carried out to 
cover the entire regime of mixed convection because 
of the singularity at cr = co. The above system of 
equations is used to generate results that apply to 
the forced convection dominating regime. 

Some of the physical quantities of interest include 
the velocity components u and 11 in the .r and y  
direction, the local friction factor Cr. (defined as 
T,/(~LI?,)/~, where T,, = /~(II~),.= J. and the local Nus- 
selt number Nu., = hs/k, where h = q,/(T,-- T,). 
They are given by 

1’ = UT f’(5rt ‘1) (11) 

I, = - (a/s)PeJ’*[( l/2)f(tr, q) 

and 

- waf’(5rr II) +ntrf&l (12) 

Crx Pr- ‘Pe.J’2 = 2.f”(?jr, 0) (13) 

Nu,Pe;“* = l/O(lr.O). (14) 

Free convection dominated case 
For the buoyancy dominated case the following 

dimensionless variables are introduced in the trans- 
formation : 

g = (y/x)R~.:‘~, 5. = 5,(4 (15) 

ti = ~Rd”f(5,, ~1, 

0th~) = (T- T,)Ra.~‘“/[qw(.u).~/kl. (16) 

Substituting equations (15) and (16) into the govern- 
ing equations (l)-(4) leads to 

f”+[(3n+2)/4]O+[(n-2)/4lqO’ = (n/2)5,0r, (17) 

O’+[(n+2)/4]j’O’-[(3n+2)/4]f’0 

= -W)tnU’~cn-@jl;n) (18) 

(n+2).1‘(5,,0) -2ntJ~n(5n,0) = 0 or .f‘(t..O) = 0 

F(<“,O) = - 1,./‘(5”, a) = 5”. U(<“, Tj) = 0 (19) 

where 

I&(S) =.Pe,/Ru:. ’ (20) 

and the primes in equations (17)-(19) again denote 
the partial differentiations with respect to ‘1. 

Note that the 5, parameter here is a measure of the 
forced flow effect on free convection. The case of 
5, = 0 corresponds to pure free convection and the 
limiting case of <, = cc corresponds to pure forced 
convection. The latter limit cannot be reached by solv- 
ing the above system of equations (17)-( 19) and these 
equations are used to generate results for the free 
convection dominating regime. 

The velocity components u and D, the local friction 
factor, and the local Nusselt number for this case have 
the expressions 

u = (a/s)Ru:“J”(&,q) (21) 

P= -(cc/l)Ra:“([(n+2)/4]S(;,,r?) 

+ [(n-WlvY(L v) - WL/~,) (22) 
CrxPe,fPr-‘Ra.;-‘s4 = 2f”(5,,0) (23) 

and 

Nu,Ra.; “’ = l/0(&,0). (24) 

It is noted that the solution of the two systems 
of equations, equations (7)-(9) and (17)-(19), must 
match and overlap in the middle region of the mixed 
convection domain, thus forming the solution for the 
entire regime of mixed convection. Also, if the right- 
hand-side terms of equations (7), (8) and (17), (18) 
are set equal to zero (i.e. the derivative of the variables 
with respect to 5 is negligible or 5 is very small), then 
the respective system of equations reduces to the ‘local 
similarity’ model which has been treated by others 
(e.g. refs. [3,7]). Note that the present nonsimilarity 
formulation reduces to similar boundary layer for- 
mulation for the special case of n = 0, which cor- 
responds to the constant surface heat flux. Also. simi- 
lar solutions for pure forced and pure free convection 
limits can be obtained from the above equations by 
setting tr = 0 and 5, = 0 in equations (7)-(9) and 
(I 7)-( 19), respectively. 

The two systems of partial differential equations, 
equations (7)-(9) and (17)-(19), have the same gen- 
eral form which can be written as 

f”+m,O+m@ = m,& (25) 

@‘+m,fO’+m,f’O = m,(f’O,-W&) (26) 

with boundary conditions given by 
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,/(C,O) = 0, O’(<, 0) = - I 

.1”((, 32) = 1177, O(& co) = 0 (27) 

where the coefficients m, to n7, are generally functions 
of <. For the first system they are given by : 

111, = <&z+1/2), n12 = -(l/2)5(, 

177 3 = -n:' _(, 1774 = l/2. 1175 = -(n+ l/2). 

111(, = I?<[, and 177, = I. 

For the second system they are : 

177, = (3n+2)/4, n72 = (n-2)/4. n13 = (np)r,. 

n7,, = (n+2)/4, nzs = -[(3r7+2)/4], 

111(, = -(n/2)( n, and /rr, = 5,. 

Each of the systems of equations was converted into 
a set of first order equations, which was then solved, 
along with the boundary conditions, by a finite- 
difference scheme due to Keller as described in Cebeci 
and Bradshaw [ 131. To conserve space, the details of 
the solution procedure are omitted here. 

RESULTS AND DISCUSSION 

The range of/r values for which the present problem 
is physically realistic can be found following the argu- 
ment used by Cheng and Chang [l2]. When the wall 
temperature at s > 0 is different from that of the 
surrounding, both u and 6, the streamwise velocity 
component and the boundary layer thickness, must 
increase or at least remain constant with respect to s. 
From equations (21) and (22) one finds that u varies 
like v”” and 17 varies like .Y”‘- 2J!4. Also, from equation 
(15).the boundary layer thickness 6, which is of the 
order of J’, varies like ,K’~-“)‘~. Thus, the above con- 
ditions can be satisfied if 0 < n < 2. Based on the 
above argument, the numerical computations were 
carried out for values of n within the above range. 
Results for O(<r, n)/O(fr. 0) and y(tr, n), the tem- 
perature and velocity profiles, for 0 < n < 2 are pre- 
sented in Figs. I and 2 for different values of tr. These 
two figures show that for a given value of II, as the 
buoyancy parameter tr increases the slip of the u- 
component velocity at the wall increases as a result 
of the buoyancy-induced favorable pressure gradient. 
Also, the gradient of the temperature profiles at the 
wall increases with tr. which results in higher heat 
transfer rate. It is clear from Figs. I and 2 that the 
thermal and the momentum boundary layer thick- 
nesses become smaller as 5,. increases. The effect of 
the value of n, the exponent for the surface heat flux 
variation, on the velocity and temperature profiles can 
be clearly seen. As n increases, the thickness of the 
thermal boundary layer as well as the thickness of the 
momentum boundary layer decreases and the tem- 
perature gradient at the wall increases, which en- 
hances the surface heat transfer rate. 

From the relationship between 5, and c,-, 5. = 
5; “l, the local Nusselt number expression for the free 

convection dominated regime, equation (24). can be 
expressed as 

Nu, Pr; ’ ’ = [l/0(<“, O)]<j’“. (28) 

Thus, the Nusselt number results from solutions of 
the two systems of equations for different values of II 
can be presented in the form Nu,Pe; “’ versus tr for 
the entire mixed convection regime. This is illustrated 
in Fig. 3. The corresponding asymptotic values for 
pure forced and pure free convection are also pre- 
sented in the figure. Figure 3 shows that the local 
Nusselt number increases as the value of 17 increases 
and as the buoyancy parameter 11- increases. The 
domains of pure forced convection, mixed convection, 
and pure free convection can be established from the 
present results based on a 5% departure in the local 
Nusselt number from the pure forced convection limit 
and from the pure free convection limit. They are 
listed in Table I. 

The values of l/O(<r, 0) and l/0(5,, 0) at selected 
values of <r and <, and for different values of II are 
listed in Table 2. Exact solutions for similar boundary 
layers exist for the cases of pure forced convection and 
pure free convection, as well as for the case of mixed 
convection with uniform surface heat flux (n = 0 
case). 

For practical purposes, correlation equations were 
developed for the local Nusselt numbers. By using the 
least square fitting technique the local Nusselt number 
for pure forced convection in the range of 0 < II < 2 
can be correlated by 

Nur =f‘,(n)Pe)” (29) 

where 

f,(n) = 0.8872+0.5298rr-0.1034n’+0.0163n3. 

(30) 

For the case of pure free convection, the correspond- 
ing correlation equation for the local Nusselt number 
is given by 

Nu, =Jz(n)Ra,;“’ (31) 

where 

f?(n) = 0.8597+0.3596n-0.0641n’+0.0103r73. 

(32) 

Equations (29) and (31) fit the computed results for 
pure forced and pure free convection within an error 
of less than 3%, respectively. 

Following Churchill [l4], the correlation equation 
for the local Nusselt number in mixed convection is 
expressed as 

(NuJNLQ)” = I +(N~r,/Nur)“‘. (33) 

For the present study the correlation equation for 
the local mixed convection Nusselt number can be 
presented by 

NO’e.; li2,‘f, (n) 

= [I + {~2(n)(Ra,/Pe.~)“4~,(n)}m] I/“‘. (34) 
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FIG. I. Dimensionless temperature profiles at selected values of tr and n 

The corresponding correlation equation for the aver- where tr, = tf at s = L. As n + 0, which is the limit- 
age mixed convection Nusselt number Nu = hL/k, ing case of uniform heat flux, equation (38) reduces 
where L is the average heat transfer coefficient over to the following expression 
the plate length L, can be presented by 

NuPeL “2/2f, (tl) [NuPeL”‘],,=, = 2[1/0(5,,.,0)]. (39) 

= [I + {[2/(n+2)lf2(n)(Ra,/PeZ) ““/f,(n)]“‘] urn (35) An exponent value of m = 3 in equations (34) and 

where Pe, and Ra, are Pe., and Ra, at x = L. Equation (35) is found to correlate the predicted results very 

(35) is obtained from equation (33) by knowing the well. The maximum deviation between the correlated 

average Nusselt number expressions for pure forced and the predicted mixed convection Nusselt numbers 

convection Nul and pure free convection Nu,. They is found to be less than 5% for the range of 0 ,< n < 2 

are found as over the entire regime of mixed convection. 

Nz+= 2f,(n)Pe;” (36) 

and CONCLUDING REMARKS 

Nu, = [4/(n+ 2)]f&t)R~;‘~. (37) 

The average mixed convection Nusselt number from 
the prediction can be derived by finding the average 
heat transfer coefficient /;from the local Nusselt num- 
ber expression given by equation (14). The end result 
is 

NuPe; “’ = (l/t7)<~~(‘t2”1 
s 

eL[s(Cr,O)]-‘~:‘-=“‘l”d~r 
0 

(38) 

A nonsimilar solution for mixed convection from 
a heated horizontal impermeable flat plate in a satu- 
rated porous medium is reported for the case of vari- 
able surface heat flux. The entire mixed convection 
regime was covered by solving one system of equa- 
tions for the forced convection dominated regime and 
another system of equations for the free convection 
dominated regime. A 5% rule was used to establish 
the regime where mixed convection becomes impor- 
tant for various surface heat flux distributions. Heat 
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Table I. Domains of pure forced convection, mixed convec- 
tion, and pure free convection 

Range of & = Ra,/Pet values for 

Exponent 
I1 

Forced 
convection 

Mixed 
convection 

Free 
convection 

0 %0.17 0.17-14 14WJ 
0.5 o-o.15 0.15~31 31-a 
I.0 (M.13 0.13-50 50-co 
I.5 o-0.12 0.12-84 84-1~ 
2.0 O-0. I I 0.11-115 I15-cc 

transfer results from the ‘local similarity’ approxi- 
mation is found to deviate from the nonsimilarity 
results by up to 10% at large values of the <, 
paramctcr. However, it gives satisfactory results for 
small values of cr and exact results for the limit cases 
of pure forced and pure free convection, as well as for 
mixed convection under the uniform surface heat flux 
condition. Simple and accurate correlations for the 
local and average Nusselt numbers were developed 
for the entire mixed convection regime. 
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Table 2. Values of l/()(tr. 0) and I /O(tn. 0) at selected values of cr and <. for different values of )I 

Sr n=O n = 0.5 n = I.0 I1 = I.5 I7 = 2 

0.0 0.886238EfOO O.I12839E+OI 0.132936EfOl O.l50452E+Ol 0.166170E+01 
0.1 0.916142E+OO O.I16303E+OI O.l36847E+Ol O.l54777E+Ol O.l70876E+Ol 
0.2 0.942366E +00 O.l19323E+Ol 0.140240E+01 0.3585158+01 O.l74936E+Ol 
0.3 0.965864E+OO 0.121964E+01 O.l432O3E+Ol 0.161751E+0l O.l78485E+Ol 
0.4 0.987244E +00 0.124401E+01 O.l4592lE+Ol O.l64764E+Ol 0.181712E+0l 
0.5 0.100692E+01 O.l26665E+Ol O.l48450E+Ol O.l6754OE+Ol O.l8472lE+Ol 
0.6 0.l02520E+Ol O.l28676E+OI 0.150693E+01 0.170004E+01 0.187390E+01 
0.7 O.l04229E+Ol 0.130603E+01 O.l52809E+Ol O.l72473E+Ol 0.190064E+01 
0.8 O.lO5837E+Ol 0.132443EfOl O.l54896E+Ol O.l74615E+Ol O.l92384E+Ol 
0.9 O.l07358E+Ol O.l34222E+Ol 0.156820E+01 0.176717E+01 O.l94652E+Ol 
I.0 0.108802E+01 0.135818E+01 o.l58658E+ol 0.1787428+01 O.l96853E+Ol 

5. 

1.0 0.108802E+0l 0.135818EfOl 0.158658E+01 O.l78742E+Ol O.l96853E+Ol 
0.9 0.106190E+01 O.l32265E+Ol O.l5423lE+Ol 0.173657EfOl O.l91286E+Ol 
0.8 0.l03607E+OI O.l28650E+OI O.l49845E+Ol O.l68575E+Ol O.l85490E+Ol 
0.7 0.101066E+01 O.l25153E+Ol O.l45453E+Ol O.l63557E+Ol O.l79756E+OI 
0.6 0.985795EfOO 0.121534E+01 0.141106E+01 0.158444E3001 0.174035E+01 
0.5 0.961626E+OO 0.117898E+01 0.136617E+01 O.l53293E+Ol O.l68296E+OI 
0.4 0.938332E+OO O.Il4607E+0l 0.132506E+01 O.l48275E+Ol O.l62588E+Ol 
0.3 0.916118E+00 0.111262E+01 O.l28l52E+Ol 0.143244EfOl O.l56923E+Ol 
0.2 0.895234E+OO 0.108126E+01 0.124076E+01 O.l38303E+Ol 0.151266E+01 
0.1 0.876002EfOO 0.105167E+01 O.l2Ol57E+Ol O.l33566E+Ol O.l45745E+Ol 
0.0 0.858906E +OO 0.102479E+01 0.116507E+01 0.128970E+01 0.140331E+0l 
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